A Generalized Approximate Cross Validation for Smoothing Splines with Non-gaussian Data

نویسندگان

  • Dong Xiang
  • Grace Wahba
چکیده

In this paper, we propose a Generalized Approximate Cross Validation (GACV) function for estimating the smoothing parameter in the penalized log likelihood regression problem with non-Gaussian data. This GACV is obtained by, first, obtaining an approximation to the leaving-out-one function based on the negative log likelihood, and then, in a step reminiscent of that used to get from leaving-outone cross validation to GCV in the Gaussian case, we replace diagonal elements of certain matrices by 1/n times the trace. A numerical simulation with Bernoulli data is used to compare the smoothing parameter λ chosen by this approximation procedure with the λ chosen from the two most often used algorithms based on the generalized cross validation procedure (O’Sullivan et al. (1986), Gu (1990, 1992)). In the examples here, the GACV estimate produces a better fit of the truth in term of minimizing the Kullback-Leibler distance. Figures suggest that the GACV curve may be an approximately unbiased estimate of the Kullback-Leibler distance in the Bernoulli data case; however, a theoretical proof is yet to be found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On confidence intervals for GAMs based on penalized regression splines

Generalized additive models represented using penalized regression splines, estimated by penalized likelihood maximisation and with smoothness selected by generalized cross validation or similar criteria, provide a computationally efficient general framework for practical smooth modelling. Various authors have proposed approximate Bayesian interval estimates for such models, based on extensions...

متن کامل

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Smoothing spline Gaussian regression: more scalable computation via efficient approximation

Smoothing splines via the penalized least squares method provide versatile and effective nonparametric models for regression with Gaussian responses. The computation of smoothing splines is generally of the order O.n3/, n being the sample size, which severely limits its practical applicability. We study more scalable computation of smoothing spline regression via certain low dimensional approxi...

متن کامل

Approximate Smoothing Spline Methods for LargeData Sets in the Binary Case

We consider the use of smoothing splines in generalized additive models with binary responses in the large data set situation. Xiang and Wahba (1996) proposed using the Generalized Approximate Cross Validation (GACV) function as a method to choose (multiple) smoothing parameters in the binary data case and demonstrated through simulation that the GACV method compares well to existing iterative ...

متن کامل

Variable Selection via Basis Pursuit for Non-Gaussian Data

A simultaneous flexible variable selection procedure is proposed by applying a basis pursuit method to the likelihood function. The basis functions are chosen to be compatible with variable selection in the context of smoothing spline ANOVA models. Since it is a generalized LASSO-type method, it enjoys the favorable property of shrinking coefficients and gives interpretable results. We derive a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996